Optimization Studies of Mg/Al-NO3 Layered Double Hydroxide Nanoparticles by Hydrothermal Treatment

Author:

BAL Kevser1ORCID,ŞENTÜRK Sema1ORCID,KAPLAN Özlem2ORCID,GÖK Mehmet Koray1ORCID,PABUCCUOĞLU Saadet Kevser1ORCID

Affiliation:

1. İSTANBUL ÜNİVERSİTESİ-CERRAHPAŞA

2. ALANYA ALAADDİN KEYKUBAT ÜNİVERSİTESİ

Abstract

Layered Double Hydroxides based nanoparticles offer significant advantages in biological applications with high biocompatibility and low cytotoxicity. In this study, nanoparticles (nMg/Al-NO3-LDH) were synthesized by the co-precipitation method and synthesis optimization of the nanoparticles was carried out by hydrothermal treatment. The effect of hydrothermal treatment on Z-average and surface charge was evaluated. Experiments were performed at 80˚C and 100˚C during in the range of 2-48 h by using different stirring rates (250, 1000, and 1500 rpm) and without stirring. Dynamic Light Scattering (DLS) was used to assess the particle size (nm), polydispersity index (PDI), and zeta potential (mV) of the nanoparticles. The chemical structure of nanoparticles was characterized by Fourier Transform Infrared spectrometry (FTIR). As a result, nanoparticles with an optimum particle size of 86.87 nm, a PDI of 0.132 and a zeta potential (mV) of 44.4±8.74 were obtained at 80˚C, 48h and 250 rpm. The data showed that Mg/Al-NO3-LDH nanoparticles have suitable physical properties for biological applications.

Publisher

ALKU Fen Bilimleri Dergisi, Alanya Alaaddin Keykubat University

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3