Low-latency and energy-efficient scheduling in fog-based IoT applications

Author:

RAHBARI DADMEHR,NICKRAY MOHSENORCID

Abstract

In today’s world, the internet of things (IoT) is developing rapidly. Wireless sensor network (WSN) as an infrastructure of IoT has limitations in the processing power, storage, and delay for data transfer to cloud. The large volume of generated data and their transmission between WSNs and cloud are serious challenges. Fog computing (FC) as an extension of cloud to the edge of the network reduces latency and traffic; thus, it is very useful in IoT applications such as healthcare applications, wearables, intelligent transportation systems, and smart cities. Resource allocation and task scheduling are the NP-hard issues in FC. Each application includes several modules that require resources to run. Fog devices (FDs) have the ability to run resource management algorithms because of their proximity to sensors and cloud as well as the proper processing power. In this paper, we review the scheduling strategies and parameters as well as providing a greedy knapsack-based scheduling (GKS) algorithm for allocating resources appropriately to modules in fog network. Our proposed method was simulated in iFogsim as a standard simulator for FC. The results show that the energy consumption, execution cost, and sensor lifetime in GKS are better than those of the first-come-first-served (FCFS), concurrent, and delay-priority algorithms.

Publisher

The Scientific and Technological Research Council of Turkey (TUBITAK-ULAKBIM)

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3