Probabilistic small-signal stability analysis of power system with solar farm integration

Author:

GURUNG SAMUNDRA,NAETILADDANON SUMATEORCID,SANGSWANG ANAWACH

Abstract

Currently, large-scale solar farms are being rapidly integrated in electrical grids all over the world. However, the photovoltaic (PV) output power is highly intermittent in nature and can also be correlated with other solar farms located at different places. Moreover, the increasing PV penetration also results in large solar forecast error and its impact on power system stability should be estimated. The effects of these quantities on small-signal stability are difficult to quantify using deterministic techniques but can be conveniently estimated using probabilistic methods. For this purpose, the authors have developed a method of probabilistic analysis based on combined cumulant and Gram– Charlier expansion technique. The output from the proposed method provides the probability density function and cumulative density function of the real part of the critical eigenvalue, from which information concerning the stability of low-frequency oscillatory dynamics can be inferred. The proposed method gives accurate results in less computation time compared to conventional techniques. The test system is a large modified IEEE 16-machine, 68-bus system, which is a benchmark system to study low-frequency oscillatory dynamics in power systems. The results show that the PV power fluctuation has the potential to cause oscillatory instability. Furthermore, the system is more prone to small-signal instability when the PV farms are correlated as well as when large PV forecast error exists.

Publisher

The Scientific and Technological Research Council of Turkey (TUBITAK-ULAKBIM)

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3