An organic synaptic circuit: toward flexible and biocompatible organic neuromorphic processing

Author:

Mirshojaeian Hosseini Mohammad JavadORCID,Yang YiORCID,Prendergast Aidan J,Donati ElisaORCID,Faezipour MiadORCID,Indiveri GiacomoORCID,Nawrocki Robert AORCID

Abstract

Abstract In the nervous system synapses play a critical role in computation. In neuromorphic systems, biologically inspired hardware implementations of spiking neural networks, electronic synaptic circuits pass signals between silicon neurons by integrating pre-synaptic voltage pulses and converting them into post-synaptic currents, which are scaled by the synaptic weight parameter. The overwhelming majority of neuromorphic systems are implemented using inorganic, mainly silicon, technology. As such, they are physically rigid, require expensive fabrication equipment and high fabrication temperatures, are limited to small-area fabrication, and are difficult to interface with biological tissue. Organic electronics are based on electronic properties of carbon-based molecules and polymers and offer benefits including physical flexibility, low cost, low temperature, and large-area fabrication, as well as biocompatibility, all unavailable to inorganic electronics. Here, we demonstrate an organic differential-pair integrator synaptic circuit, a biologically realistic synapse model, implemented using physically flexible complementary organic electronics. The synapse is shown to convert input voltage spikes into output current traces with biologically realistic time scales. We characterize circuit’s responses based on various synaptic parameters, including gain and weighting voltages, time-constant, synaptic capacitance, and circuit response due to inputs of different frequencies. Time constants comparable to those of biological synapses and the neurons are critical in processing real-world sensory signals such as speech, or bio-signals measured from the body. For processing even slower signals, e.g., on behavioral time scales, we demonstrate time constants in excess of two seconds, while biologically plausible time constants are achieved by deploying smaller synaptic capacitors. We measure the circuit synaptic response to input voltage spikes and present the circuit response properties using custom-made circuit simulations, which are in good agreement with the measured behavior.

Funder

Office of Naval Research

Publisher

IOP Publishing

Subject

General Medicine

Reference65 articles.

1. Neuromorphic electronic systems;Mead;Proc. IEEE,1990

2. Frontiers in neuromorphic engineering;Indiveri;Front. Neurosci.,2011

3. The emergent neural modeling system;Aisa;Neural Netw.,2008

4. BP network implementation based on computer MATLAB neural network toolbox;Wang;J. Phys.: Conf. Ser.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3