Impact of edge defects on the synaptic characteristic of a ferromagnetic domain-wall device and on on-chip learning

Author:

Singh Yadav Ram,Sadashiva Aniket,Holla Amod,Muduli Pranaba Kishor,Bhowmik DebanjanORCID

Abstract

Abstract Topological-soliton-based devices, like the ferromagnetic domain-wall device, have been proposed as non-volatile memory (NVM) synapses in electronic crossbar arrays for fast and energy-efficient implementation of on-chip learning of neural networks (NN). High linearity and symmetry in the synaptic weight-update characteristic of the device (long-term potentiation (LTP) and long-term depression (LTD)) are important requirements to obtain high classification/regression accuracy in such an on-chip learning scheme. However, obtaining such linear and symmetric LTP and LTD characteristics in the ferromagnetic domain-wall device has remained a challenge. Here, we first carry out micromagnetic simulations of the device to show that the incorporation of defects at the edges of the device, with the defects having higher perpendicular magnetic anisotropy compared to the rest of the ferromagnetic layer, leads to massive improvement in the linearity and symmetry of the LTP and LTD characteristics of the device. This is because these defects act as pinning centres for the domain wall and prevent it from moving during the delay time between two consecutive programming current pulses, which is not the case when the device does not have defects. Next, we carry out system-level simulations of two crossbar arrays with synaptic characteristics of domain-wall synapse devices incorporated in them: one without such defects, and one with such defects. For on-chip learning of both long short-term memory networks (using a regression task) and fully connected NN (using a classification task), we show improved performance when the domain-wall synapse devices have defects at the edges. We also estimate the energy consumption in these synaptic devices and project their scaling, with respect to on-chip learning in corresponding crossbar arrays.

Funder

Ministry of Education (MoE), India

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial: Focus issue on topological solitons for neuromorphic systems;Neuromorphic Computing and Engineering;2024-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3