WDM equipped universal linear optics for programmable neuromorphic photonic processors

Author:

Totovic AngelinaORCID,Pappas ChristosORCID,Kirtas ManosORCID,Tsakyridis ApostolosORCID,Giamougiannis GeorgeORCID,Passalis NikolaosORCID,Moralis-Pegios MiltiadisORCID,Tefas AnastasiosORCID,Pleros NikosORCID

Abstract

Abstract Non-von-Neumann computing architectures and deep learning training models have sparked a new computational era where neurons are forming the main architectural backbone and vector, matrix and tensor multiplications comprise the basic mathematical toolbox. This paradigm shift has triggered a new race among hardware technology candidates; within this frame, the field of neuromorphic photonics promises to convolve the targeted algebraic portfolio along a computational circuitry with unique speed, parallelization, and energy efficiency advantages. Fueled by the inherent energy efficient analog matrix multiply operations of optics, the staggering advances of photonic integration and the enhanced multiplexing degrees offered by light, neuromorphic photonics has stamped the resurgence of optical computing brining a unique perspective in low-energy and ultra-fast linear algebra functions. However, the field of neuromorphic photonics has relied so far on two basic architectural schemes, i.e., coherent linear optical circuits and incoherent WDM approaches, where wavelengths have still not been exploited as a new mathematical dimension. In this paper, we present a radically new approach for promoting the synergy of WDM with universal linear optics and demonstrate a new, high-fidelity crossbar-based neuromorphic photonic platform, able to support matmul with multidimensional operands. Going a step further, we introduce the concept of programmable input and weight banks, supporting in situ reconfigurability, forming in this way the first WDM-equipped universal linear optical operator and demonstrating different operational modes like matrix-by-matrix and vector-by-tensor multiplication. The benefits of our platform are highlighted in a fully convolutional neural network layout that is responsible for parity identification in the MNIST handwritten digit dataset, with physical layer simulations revealing an accuracy of ∼94%, degraded by only 2% compared to respective results obtained when executed entirely by software. Finally, our in-depth analysis provides the guidelines for neuromorphic photonic processor performance improvement, revealing along the way that 4 bit quantization is sufficient for inputs, whereas the weights can be implemented with as low as 2 bits of precision, offering substantial benefits in terms of driving circuitry complexity and energy savings.

Funder

Hellenic Foundation for Research and Innovation

Publisher

IOP Publishing

Subject

General Medicine

Reference56 articles.

1. The building blocks of a brain-inspired computer;Kendall;Appl. Phys. Rev.,2020

2. Language models are few-shot learners;Brown,2020

3. Using DeepSpeed and megatron to train megatron-turing NLG 530B, the world’s largest and most powerful generative language model;Kharya,2021

4. Benchmarking TPU, GPU, and CPU platforms for deep learning;Wang,2019

5. Recent advances in convolutional neural networks;Gu;Pattern Recognit.,2018

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3