Integration of Ag-CBRAM crossbars and Mott ReLU neurons for efficient implementation of deep neural networks in hardware

Author:

Shi YuhanORCID,Oh Sangheon,Park JaeseoungORCID,Valle Javier del,Salev Pavel,Schuller Ivan K,Kuzum Duygu

Abstract

Abstract In-memory computing with emerging non-volatile memory devices (eNVMs) has shown promising results in accelerating matrix-vector multiplications. However, activation function calculations are still being implemented with general processors or large and complex neuron peripheral circuits. Here, we present the integration of Ag-based conductive bridge random access memory (Ag-CBRAM) crossbar arrays with Mott rectified linear unit (ReLU) activation neurons for scalable, energy and area-efficient hardware (HW) implementation of deep neural networks. We develop Ag-CBRAM devices that can achieve a high ON/OFF ratio and multi-level programmability. Compact and energy-efficient Mott ReLU neuron devices implementing ReLU activation function are directly connected to the columns of Ag-CBRAM crossbars to compute the output from the weighted sum current. We implement convolution filters and activations for VGG-16 using our integrated HW and demonstrate the successful generation of feature maps for CIFAR-10 images in HW. Our approach paves a new way toward building a highly compact and energy-efficient eNVMs-based in-memory computing system.

Funder

U.S. Department of Energy

National Institutes of Health

National Science Foundation

Office of Naval Research Global

Publisher

IOP Publishing

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Reference19 articles.

1. Deep learning;LeCun;Nature,2015

2. Vanishing gradient mitigation with deep learning neural network optimization;Tan,2019

3. In-memory computing with resistive switching devices;Ielmini;Nat. Electron.,2018

4. Emerging non-volatile memories: opportunities and challenges;Xue,2011

5. Design considerations for efficient deep neural networks on processing-in-memory accelerators;Yang,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3