How fast can vanadium dioxide neuron-mimicking devices oscillate? Physical mechanisms limiting the frequency of vanadium dioxide oscillators

Author:

Carapezzi SORCID,Plews AORCID,Boschetto GORCID,Nejim AORCID,Karg SORCID,Todri-Sanial AORCID

Abstract

Abstract The frequency of vanadium dioxide (VO2) oscillators is a fundamental figure of merit for the realization of neuromorphic circuits called oscillatory neural networks (ONNs) since the high frequency of oscillators ensures low-power consuming, real-time computing ONNs. In this study, we perform electrothermal 3D technology computer-aided design (TCAD) simulations of a VO2 relaxation oscillator. We find that there exists an upper limit to its operating frequency, where such a limit is not predicted from a purely circuital model of the VO2 oscillator. We investigate the intrinsic physical mechanisms that give rise to this upper limit. Our TCAD simulations show that it arises a dependence on the frequency of the points of the curve current versus voltage across the VO2 device corresponding to the insulator-to-metal transition (IMT) and metal-to-insulator transition (MIT) during oscillation, below some threshold values of C e x t . This implies that the condition for the self-oscillatory regime may be satisfied by a given load-line in the low-frequency range but no longer at higher frequencies, with consequent suppression of oscillations. We note that this variation of the IMT/MIT points below some threshold values of C e x t is due to a combination of different factors: intermediate resistive states achievable by VO2 channel and the interplay between frequency and heat transfer rate. Although the upper limit on the frequency that we extract is linked to the specific VO2 device we simulate, our findings apply qualitatively to any VO2 oscillator. Overall, our study elucidates the link between electrical and thermal behavior in VO2 devices that sets a constraint on the upper values of the operating frequency of any VO2 oscillator.

Funder

Horizon 2020 Framework Programme

Publisher

IOP Publishing

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3