Scaling neural simulations in STACS

Author:

Wang FelixORCID,Kulkarni ShrutiORCID,Theilman BradleyORCID,Rothganger FredrickORCID,Schuman CatherineORCID,Lim Seung-HwanORCID,Aimone James BORCID

Abstract

Abstract As modern neuroscience tools acquire more details about the brain, the need to move towards biological-scale neural simulations continues to grow. However, effective simulations at scale remain a challenge. Beyond just the tooling required to enable parallel execution, there is also the unique structure of the synaptic interconnectivity, which is globally sparse but has relatively high connection density and non-local interactions per neuron. There are also various practicalities to consider in high performance computing applications, such as the need for serializing neural networks to support potentially long-running simulations that require checkpoint-restart. Although acceleration on neuromorphic hardware is also a possibility, development in this space can be difficult as hardware support tends to vary between platforms and software support for larger scale models also tends to be limited. In this paper, we focus our attention on Simulation Tool for Asynchronous Cortical Streams (STACS), a spiking neural network simulator that leverages the Charm++ parallel programming framework, with the goal of supporting biological-scale simulations as well as interoperability between platforms. Central to these goals is the implementation of scalable data structures suitable for efficiently distributing a network across parallel partitions. Here, we discuss a straightforward extension of a parallel data format with a history of use in graph partitioners, which also serves as a portable intermediate representation for different neuromorphic backends. We perform scaling studies on the Summit supercomputer, examining the capabilities of STACS in terms of network build and storage, partitioning, and execution. We highlight how a suitably partitioned, spatially dependent synaptic structure introduces a communication workload well-suited to the multicast communication supported by Charm++. We evaluate the strong and weak scaling behavior for networks on the order of millions of neurons and billions of synapses, and show that STACS achieves competitive levels of parallel efficiency.

Funder

Advanced Scientific Computing Research

Publisher

IOP Publishing

Reference67 articles.

1. The mind of a mouse;Abbott;Cell,2020

2. Editorial: neuroscience, computing, performance and benchmarks: why it matters to neuroscience how fast we can compute;Aimone;Front. Neuroinf.,2023

3. Simple model of spiking neurons;Izhikevich;IEEE Trans. Neural Netw.,2003

4. A survey of neuromorphic computing and neural networks in hardware;Schuman,2017

5. Brain modeling toolkit: an open source software suite for multiscale modeling of brain circuits;Dai;PLoS Comput. Biol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3