Static hand gesture recognition for American sign language using neuromorphic hardware

Author:

Mohammadi MohammadrezaORCID,Chandarana PeytonORCID,Seekings JamesORCID,Hendrix Sara,Zand RamtinORCID

Abstract

Abstract In this paper, we develop four spiking neural network (SNN) models for two static American sign language (ASL) hand gesture classification tasks, i.e., the ASL alphabet and ASL digits. The SNN models are deployed on Intel’s neuromorphic platform, Loihi, and then compared against equivalent deep neural network (DNN) models deployed on an edge computing device, the Intel neural compute stick 2 (NCS2). We perform a comprehensive comparison between the two systems in terms of accuracy, latency, power consumption, and energy. The best DNN model achieves an accuracy of 99.93% on the ASL alphabet dataset, whereas the best performing SNN model has an accuracy of 99.30%. For the ASL-digits dataset, the best DNN model achieves an accuracy of 99.76% accuracy while the SNN achieves 99.03%. Moreover, our obtained experimental results show that the Loihi neuromorphic hardware implementations achieve up to 20.64× and 4.10× reduction in power consumption and energy, respectively, when compared to NCS2.

Funder

ASPIRE grant from the Office of the Vice President for Research at the University of South Carolina

Publisher

IOP Publishing

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic American sign language prediction for static and dynamic gestures using KFM-CNN;Soft Computing;2024-07-19

2. A Real-Time Hand Gesture Recognition System on Raspberry Pi: A Deep Learning-Based Approach;2024 IEEE 21st Consumer Communications & Networking Conference (CCNC);2024-01-06

3. Realtime Facial Expression Recognition: Neuromorphic Hardware vs. Edge AI Accelerators;2023 International Conference on Machine Learning and Applications (ICMLA);2023-12-15

4. TransONet: Automatic Segmentation of Vasculature in Computed Tomographic Angiograms Using Deep Learning;2023 International Conference on Computational Science and Computational Intelligence (CSCI);2023-12-13

5. Diverse hand gesture recognition dataset;Multimedia Tools and Applications;2023-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3