Towards low loss non-volatile phase change materials in mid index waveguides

Author:

Faneca JoaquinORCID,Zeimpekis Ioannis,Ilie S T,Bucio Thalía DomínguezORCID,Grabska Katarzyna,Hewak Daniel W,Gardes Frederic Y

Abstract

Abstract Photonic integrated circuits currently use platform intrinsic thermo-optic and electro-optic effects to implement dynamic functions such as switching, modulation and other processing. Currently, there is a drive to implement field programmable photonic circuits, a need which is only magnified by new neuromorphic and quantum computing applications. The most promising non-volatile photonic components employ phase change materials such as GST and GSST, which had their origin in electronic memory. However, in the optical domain, these compounds introduce significant losses potentially preventing a large number of applications. Here, we evaluate the use of two newly introduced low loss phase change materials, Sb2S3 and Sb2Se3, on a silicon nitride photonic platform for future implementation in neuromorphic computing. We focus the study on Mach–Zehnder interferometers that operate at the O and C bands to demonstrate the performance of the system. Our measurements show an insertion loss below 0.04 dB μm−1 for Sb2S3 and lower than 0.09 dB μm−1 for Sb2Se3 cladded devices for both amorphous and crystalline phases. The effective refractive index contrast for Sb2S3 on SiNx was measured to be 0.05 at 1310 nm and 0.02 at 1550 nm, whereas for Sb2Se3, it was 0.03 at 1310 nm and 0.05 at 1550 nm highlighting the performance of the integrated device.

Funder

Horizon 2020 Framework Programme

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

General Medicine

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3