Harnessing stochasticity for superconductive multi-layer spike-rate-coded neuromorphic networks

Author:

Edwards Alexander JORCID,Krylov GlebORCID,Friedman Joseph SORCID,Friedman Eby GORCID

Abstract

Abstract Conventional semiconductor-based integrated circuits are gradually approaching fundamental scaling limits. Many prospective solutions have recently emerged to supplement or replace both the technology on which basic devices are built and the architecture of data processing. Neuromorphic circuits are a promising approach to computing where techniques used by the brain to achieve high efficiency are exploited. Many existing neuromorphic circuits rely on unconventional and useful properties of novel technologies to better mimic the operation of the brain. One such technology is single flux quantum (SFQ) logic—a cryogenic superconductive technology in which the data are represented by quanta of magnetic flux (fluxons) produced and processed by Josephson junctions embedded within inductive loops. The movement of a fluxon within a circuit produces a quantized voltage pulse (SFQ pulse), resembling a neuronal spiking event. These circuits routinely operate at clock frequencies of tens to hundreds of gigahertz, making SFQ a natural technology for processing high frequency pulse trains. This work harnesses thermal stochasticity in superconducting synapses to emulate stochasticity in biological synapses in which the synapse probabilistically propagates or blocks incoming spikes. The authors also present neuronal, fan-in, and fan-out circuitry inspired by the literature that seamlessly cascade with the synapses for deep neural network construction. Synapse weights and neuron biases are set with bias current, and the authors propose multiple mechanisms for training the network and storing weights. The network primitives are successfully demonstrated in simulation in the context of a rate-coded multi-layer XOR neural network which achieves a wide classification margin. The proposed methodology is based solely on existing SFQ technology and does not employ unconventional superconductive devices or semiconductor transistors, making this proposed system an effective approach for scalable cryogenic neuromorphic computing.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3