Artificial nanophotonic neuron with internal memory for biologically inspired and reservoir network computing

Author:

Winge DavidORCID,Borgström MagnusORCID,Lind ErikORCID,Mikkelsen AndersORCID

Abstract

Abstract Neurons with internal memory have been proposed for biological and bio-inspired neural networks, adding important functionality. We introduce an internal time-limited charge-based memory into a III–V nanowire (NW) based optoelectronic neural node circuit designed for handling optical signals in a neural network. The new circuit can receive inhibiting and exciting light signals, store them, perform a non-linear evaluation, and emit a light signal. Using experimental values from the performance of individual III–V NWs we create a realistic computational model of the complete artificial neural node circuit. We then create a flexible neural network simulation that uses these circuits as neuronal nodes and light for communication between the nodes. This model can simulate combinations of nodes with different hardware derived memory properties and variable interconnects. Using the full model, we simulate the hardware implementation for two types of neural networks. First, we show that intentional variations in the memory decay time of the nodes can significantly improve the performance of a reservoir network. Second, we simulate the implementation in an anatomically constrained functioning model of the central complex network of the insect brain and find that it resolves an important functionality of the network even with significant variations in the node performance. Our work demonstrates the advantages of an internal memory in a concrete, nanophotonic neural node. The use of variable memory time constants in neural nodes is a general hardware derived feature and could be used in a broad range of implementations.

Funder

European Union

Swedish Research Council

Office of Naval Research

Publisher

IOP Publishing

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Reference53 articles.

1. Engram cells retain memory under retrograde Amnesia;Ryan;Science,2015

2. Long short-term memory networks in memristor crossbar arrays;Li;Nat. Mach. Intell.,2019

3. Memory trace and timing mechanism localized to cerebellar purkinje cells;Johansson;Proc. Natl Acad. Sci. USA,2014

4. What if memory information is stored inside the neuron, instead of in the synapse?;Tee,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3