General spiking neural network framework for the learning trajectory from a noisy mmWave radar

Author:

Liu XinORCID,Yan Mingyu,Deng Lei,Wu Yujie,Han De,Li Guoqi,Ye Xiaochun,Fan Dongrui

Abstract

Abstract Emerging usages for millimeter wave (mmWave) radar have drawn extensive attention and inspired the exploration of learning mmWave radar data. To be effective, instead of using conventional approaches, recent works have employed modern neural network models to process mmWave radar data. However, due to some inevitable obstacles, e.g., noise and sparsity issues in data, the existing approaches are generally customized for specific scenarios. In this paper, we propose a general neuromorphic framework, termed mm-SNN, to process mmWave radar data with spiking neural networks (SNNs), leveraging the intrinsic advantages of SNNs in processing noisy and sparse data. Specifically, we first present the overall design of mm-SNN, which is adaptive and easily expanded for multi-sensor systems. Second, we introduce general and straightforward attention-based improvements into the mm-SNN to enhance the data representation, helping promote performance. Moreover, we conduct explorative experiments to certify the robustness and effectiveness of the mm-SNN. To the best of our knowledge, mm-SNN is the first SNN-based framework that processes mmWave radar data without using extra modules to alleviate the noise and sparsity issues, and at the same time, achieve considerable performance in the task of trajectory estimation.

Publisher

IOP Publishing

Subject

General Medicine

Reference43 articles.

1. Tensorflow: a system for large-scale machine learning;Abadi,2016

2. Object classification technique for mmWave FMCW radars using range-FFT features;Bhatia,2021

3. Spatial attention fusion for obstacle detection using mmWave radar and vision sensor;Chang;Sensors,2020

4. LISNN: improving spiking neural networks with lateral interactions for robust object recognition;Cheng,2020

5. Tianjic: a unified and scalable chip bridging spike-based and continuous neural computation;Deng;IEEE J. Solid-State Circuits,2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3