Machine learning using magnetic stochastic synapses

Author:

Ellis Matthew O AORCID,Welbourne AlexanderORCID,Kyle Stephan J,Fry Paul W,Allwood Dan AORCID,Hayward Thomas JORCID,Vasilaki EleniORCID

Abstract

Abstract The impressive performance of artificial neural networks has come at the cost of high energy usage and CO2 emissions. Unconventional computing architectures, with magnetic systems as a candidate, have potential as alternative energy-efficient hardware, but, still face challenges, such as stochastic behaviour, in implementation. Here, we present a methodology for exploiting the traditionally detrimental stochastic effects in magnetic domain-wall motion in nanowires. We demonstrate functional binary stochastic synapses alongside a gradient learning rule that allows their training with applicability to a range of stochastic systems. The rule, utilising the mean and variance of the neuronal output distribution, finds a trade-off between synaptic stochasticity and energy efficiency depending on the number of measurements of each synapse. For single measurements, the rule results in binary synapses with minimal stochasticity, sacrificing potential performance for robustness. For multiple measurements, synaptic distributions are broad, approximating better-performing continuous synapses. This observation allows us to choose design principles depending on the desired performance and the device’s operational speed and energy cost. We verify performance on physical hardware, showing it is comparable to a standard neural network.

Funder

Leverhulme Trust

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Progress in Spin Logic Devices Based on Domain-Wall Motion;Micromachines;2024-05-24

2. Editorial: Focus on Neuromorphic Circuits and Systems using Emerging Devices;Neuromorphic Computing and Engineering;2024-01-30

3. Magnetic domain walls: types, processes and applications;Journal of Physics D: Applied Physics;2023-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3