Reducing the spike rate of deep spiking neural networks based on time-encoding

Author:

Fontanini RiccardoORCID,Pilotto AlessandroORCID,Esseni DavidORCID,Loghi MirkoORCID

Abstract

Abstract A primary objective of Spiking Neural Networks is a very energy-efficient computation. To achieve this target, a small spike rate is of course very beneficial given the event-driven nature of such a computation. A network that processes information encoded in spike timing can, by its nature, have such a sparse event rate, but, as the network becomes deeper and larger, the spike rate tends to increase without any improvements in the final accuracy. If, on the other hand, a penalty on the excess of spikes is used during the training, the network may shift to a configuration where many neurons are silent, thus affecting the effectiveness of the training itself. In this paper, we present a learning strategy to keep the final spike rate under control by changing the loss function to penalize the spikes generated by neurons after the first ones. Moreover, we also propose a 2-phase training strategy to avoid silent neurons during the training, intended for benchmarks where such an issue can cause the switch off of the network.

Publisher

IOP Publishing

Reference32 articles.

1. Sequence to sequence learning with neural networks;Sutskever,2014

2. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups;Hinton;IEEE Signal Process. Mag.,2012

3. Imagenet classification with deep convolutional neural networks;Krizhevsky,2012

4. Deep reinforcement learning for the control of robotic manipulation: a focussed mini-review;Liu,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3