Neuromorphic control of a simulated 7-DOF arm using Loihi

Author:

DeWolf TravisORCID,Patel Kinjal,Jaworski Pawel,Leontie Roxana,Hays JoeORCID,Eliasmith Chris

Abstract

Abstract In this paper, we present a fully spiking neural network running on Intel’s Loihi chip for operational space control of a simulated 7-DOF arm. Our approach uniquely combines neural engineering and deep learning methods to successfully implement position and orientation control of the end effector. The development process involved four stages: (1) Designing a node-based network architecture implementing an analytical solution; (2) developing rate neuron networks to replace the nodes; (3) retraining the network to handle spiking neurons and temporal dynamics; and finally (4) adapting the network for the specific hardware constraints of the Loihi. We benchmark the controller on a center-out reaching task, using the deviation of the end effector from the ideal trajectory as our evaluation metric. The RMSE of the final neuromorphic controller running on Loihi is only slightly worse than the analytic solution, with 4.13% more deviation from the ideal trajectory, and uses two orders of magnitude less energy per inference than standard hardware solutions. While qualitative discrepancies remain, we find these results support both our approach and the potential of neuromorphic controllers. To the best of our knowledge, this work represents the most advanced neuromorphic implementation of neurorobotics developed to date.

Funder

Canada Research Chairs

Canada Foundation for Innovation

Publisher

IOP Publishing

Subject

General Medicine

Reference24 articles.

1. Control of a humanoid NAO robot by an adaptive bioinspired cerebellar module in 3D motion tasks;Antonietti;Comput. Intell. Neurosci.,2019

2. Embodied neuromorphic intelligence;Bartolozzi;Nat. Commun.,2022

3. Nengo: a Python tool for building large-scale functional brain models;Bekolay;Front. Neuroinform.,2014

4. Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations;Benjamin;Proc. IEEE,2014

5. Benchmarking keyword spotting efficiency on neuromorphic hardware;Blouw,2019

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3