Abstract
Abstract
Cell focusing and separation is a prerequisite for several biological applications. Among these technologies that can achieve the operation, dielectrophoresis (DEP) has been widely used due to its non-contact, label-free and easy-to-operate advantages. In this paper, we designed a microchip that integrates 3D electrodes and wavy microchannel for cell focusing and separation. The 3D electrodes act as not only the electrodes but also as the microchannel walls. The wavy microchannel enables 3D electrodes to generate electric field gradient required by DEP force in the entire microchannel. Cells can be focused and separated under the synergistic effect of DEP and fluidic forces. We have demonstrated the feasibility of the microchip through numerical simulations and experiments. And we validated our approach by demonstrating focusing and separation of A549 and HeLa cells. According to the electrical differences of cells, in the range of 61–99 kHz, the two types of cells can be focused into three streams under the action of positive and negative DEP force to achieve cell separation. With the increase of the voltage amplitude to 10 V, the width of the cell streams was focused to about 30 μm, which can improve the effect of cell separation, the separation efficiency of A549 and HeLa can reach 91.2% and 95.1%, respectively. The proposed microchip is expected to provide a new pathway for designing an effective cell focusing and separation platform.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Anhui Province
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献