Statics and dynamics of an underwater electrostatic curved electrode actuator with rough surfaces

Author:

Lake-Speers Melinda AORCID,Preetham Burugupally SindhuORCID,Hoelzle David JORCID

Abstract

Abstract Here, we present a model, design, static and dynamic testing, and analysis of an electrostatic curved electrode actuator in deionized water. The actuator is integrated within a microfluidic device designed for high throughput cell sorting. The actuator shifts the bifurcation point of a Y-shaped microfluidic channel to simultaneously increase the width of one channel while decreasing the width of another channel, thus changing the bias in hydrodynamic resistance between outlet channels. The actuator is modeled as a clamped-roller beam and the static displacement is calculated based on Rayleigh–Ritz energy methods. The model accounts for oxide growth and surface roughness that occurs during fabrication. We observe that modeling a rough contact surface improves the maximum displacement prediction to within less than 20% error from the experimental value. Additionally, the model predicts a release voltage within less than 8% error of the experimental value. We also present dynamic experiments to test the actuator displacement at frequencies from 1 to 4096 Hz and show that the actuator achieves large displacements ( > 8 µm) at high frequencies ( > 100 Hz).

Funder

The Ohio State University Start up Funds

University of Notre Dame Clare Boothe Luce Fellowship

University of Notre Dame Walther Cancer Foundation ENSCCII Fellowship

University of Notre Dame Start up Funds

University of Notre Dame Advanced Diagnostics & Therapeutic Berry Family Foundation Fellowships

American Cancer Society

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3