Abstract
Abstract
A simple and robust electrode insulation technique that can withstand a voltage as high as
1000
V
, which is equivalent to an electric field strength of
∼
1
MV m−1 across a
10
μ
m
channel filled with an electrolyte of conductivity
∼
0.1
S m−1, i.e. higher than sea water’s conductivity, is introduced. A multi-dielectric layers approach is adopted to fabricate the blocked electrodes, which helps reduce the number of material defects. Dielectric insulation with an exceptional breakdown electric field strength for an electrolyte confined between electrodes can have a wide range of applications in microfluidics, like high electric field strength-based dielectrophoresis. The voltage-current characteristics are studied for various concentrations of sodium chloride solution to estimate the insulation strength of the proposed materials, and the breakdown strength is calculated at the point where the electrical insulation failed. A detailed adhesion technique is also demonstrated, which will reduce the ambiguity around the fabrication of a sealed channel using SU-8.
Funder
American Chemical Society Petroleum Research Fund
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献