Photothermal liquid release from arrayed Au nanorod/hydrogel composites for chemical stimulation

Author:

Seo Sang-WooORCID,Song Youngsik,Rostami Azmand Hojjat

Abstract

Abstract Controlled photothermal actuation of liquid release is presented using periodically arrayed hydrogel columns in a macroporous silicon membrane. Thermo-responsive hydrogel is mixed with Gold (Au) nanorods, and surface plasmon-induced local heating by near-infrared (NIR) light is utilized as an actuation method. We adopted theoretical modeling, which treats the hydrogel as a poro-viscoelastic medium to understand the mechanical and liquid transport properties of the hydrogel. To demonstrate the feasibility of the liquid release control using NIR light, we first characterized the temperature response of Au nanorod embedded hydrogel in the silicon membrane using its optical transmission behavior to confirm the successful device fabrication. Next, the liquid release characteristics from the structure were studied using fluorescent imaging of fluorescein dye solution while pulsed NIR light was illuminated on the structure. We successfully demonstrate that the liquid release can be controlled using remote NIR illumination from the presented structure. Considering the periodically arrayed configuration with high spatial resolution, this will have a potential prospect for optically-addressable chemical release systems, which benefit retina prosthesis interfaces.

Funder

CUNY

National Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3