Abstract
Abstract
This paper presents surface acoustic wave (SAW)-driven self-cleaning glass aimed at removing contaminants that occur on the surfaces of automotive sensors for autonomous driving. The proposed self-cleaning glass comprises an interdigitated transducer (IDT) patterned on top of the transparent piezoelectric substrate (LiNbO3) and a hydrophobic layer (Cytop) covering the IDT. First, the sliding angle and contact angle of a droplet on a hydrophobic layer are measured in different volumes without the application of any external forces. The experiment shows that the droplets smaller than 4 μl do not slide on the inclined surface. To investigate the effect of SAW on droplet removal, the traveled distances and speeds of droplets are measured in different volumes, viscosities, and applied voltages when the droplets are removed on the surface by the SAW operation of the fabricated self-cleaning glass. Then, it is also investigated that the motion of the droplets by SAW on the inclined substrate in the direction of gravity and the opposite direction. Quantitative tests on the droplet removal performance of the SAW-driven self-cleaning glass are carried out by analyzing captured images recorded during the droplet removal by the SAW operation. As proof of concept, the proposed self-cleaning technology is demonstrated on droplets formed on a lens surface of a camera on which the SAW device is mounted. The demonstration shows that the camera image distorted by droplets that occur on the initial glass cover of the camera module is quickly restored by the SAW operation. The proposed SAW-driven drop free glass can promptly remove various contaminants on the surface of the sensors. Hence, it can be applied not only for automotive sensors but also for outdoor security cameras for daily life safety and future industries such as smart factories and smart cities.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献