SAW-driven self-cleaning drop free glass for automotive sensors

Author:

Song Hyeonseok,Jang Deasung,Lee Jeongmin,Lee Kang Yong,Chung Sang KugORCID

Abstract

Abstract This paper presents surface acoustic wave (SAW)-driven self-cleaning glass aimed at removing contaminants that occur on the surfaces of automotive sensors for autonomous driving. The proposed self-cleaning glass comprises an interdigitated transducer (IDT) patterned on top of the transparent piezoelectric substrate (LiNbO3) and a hydrophobic layer (Cytop) covering the IDT. First, the sliding angle and contact angle of a droplet on a hydrophobic layer are measured in different volumes without the application of any external forces. The experiment shows that the droplets smaller than 4 μl do not slide on the inclined surface. To investigate the effect of SAW on droplet removal, the traveled distances and speeds of droplets are measured in different volumes, viscosities, and applied voltages when the droplets are removed on the surface by the SAW operation of the fabricated self-cleaning glass. Then, it is also investigated that the motion of the droplets by SAW on the inclined substrate in the direction of gravity and the opposite direction. Quantitative tests on the droplet removal performance of the SAW-driven self-cleaning glass are carried out by analyzing captured images recorded during the droplet removal by the SAW operation. As proof of concept, the proposed self-cleaning technology is demonstrated on droplets formed on a lens surface of a camera on which the SAW device is mounted. The demonstration shows that the camera image distorted by droplets that occur on the initial glass cover of the camera module is quickly restored by the SAW operation. The proposed SAW-driven drop free glass can promptly remove various contaminants on the surface of the sensors. Hence, it can be applied not only for automotive sensors but also for outdoor security cameras for daily life safety and future industries such as smart factories and smart cities.

Funder

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference40 articles.

1. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction;Bhushan;Prog. Mater. Sci.,2011

2. Photooxidative self-cleaning transparent titanium dioxide films on glass;Paz;J. Mater. Res.,2011

3. Self-cleaning and antireflective packaging glass for solar modules;Verma;Renew. Energy,2011

4. Bio-inspired strategies for anti-icing;Lv;ACS Nano,2014

5. High speed transport of fluid and solid particles via surface acoustic wave (SAW) using no physically moving parts;Bar-Cohen;NASA Tech. Briefs,2012

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3