Parametric resonance of bi-directional axial loads shallow arch microresonators

Author:

Najar FehmiORCID,Ouakad Hassen MORCID,Ramini Abdallah,Alcheikh Nouha,Younis Mohammad I

Abstract

Abstract In this work, we investigate analytically and experimentally parametric resonances of an in-plane clamped-guided shallow arch microresonator. The arch is connected to a T-shaped moveable mass, which is sandwiched between two electrodes to electrostatically activate the device and to offer bi-directional axial loads option. The device is tested under primary and secondary parametric resonances. In addition, an analytical model is presented taking into account the initial rise of the microbeam and the sliding motion at the guided side. The static and free vibration problems are solved using the Differential Quadrature Method, and the dynamic response is simulated using an assumed mode Galerkin approximation. The theoretical results of the static and dynamic behavior of the device are compared to experimental data showing good agreement. Moreover, we demonstrate the use of parametric excitation to significantly amplify the axial motion. It is found that the second parametric resonance, corresponding to the fundamental mode of the arched microbeam, has a higher amplitude than the principal parametric case, due to the initial curvature of the beam. Thus, the proposed device can be a promising candidate for variety of sensing applications.

Funder

Sultan Qaboos University

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3