Influence of process parameters on the characteristics of electrohydrodynamic-printed UV-curing conductive lines on the fabric

Author:

Guo WenjingORCID,Hu JiyongORCID,Yan Xiong

Abstract

Abstract As a similar technology to the near-field static electrospinning, the emerging electrohydrodynamic (EHD) printing technology with digital printing process and compatibility of viscous particle-blended inks is one of the simplest methods of fabricating multifunctional electronic textiles. With increasing demands for textile-based conductive lines with controllable width and excellent electrical performance, it is of great importance to know the influence of key process parameters on the morphology and electrical properties of EHD-printed UV-curing conductive lines on the fabric. This work will systematically explore the effect of the EHD printing process parameters (i.e. applied voltage, direct-writing height, flow rate and moving velocity of the substrate) on the morphology and electrical performance of the EHD-printed textile-based conductive lines, especially focus on the diffusion and penetration of inks on the rough and porous fabric. The UV-curing nano-silver ink with low temperature and fast curing features was selected, and the line width and electrical resistance of printed lines under different process parameters were observed and measured. The results showed that, unlike previous results about EHD printing on smooth and impermeable substrates, the ink diffusion related to fabric textures had a greater effect on the fabric-based conductive line width than the applied voltage and direct-writing height in the case of a stable jet. Meanwhile, the relationship between the line width and the flow rate met the equation of d = 407.28 × Q 1 2 , and the minimum volume on fabric per millimeter was 0.67 μl to form continuous line with low electrical resistance. Additionally, the higher substrate moving velocity resulted in a smaller line width, while it deteriorated the thickness uniformity and electrical property of printed lines. Generally, due to the effect of surface structure of the fabric on the spreading and penetrating behavior of inks, the flow rate and the substrate moving velocity are two significant parameters ensuring the electrical property of printed lines. It is believed that these findings will provide some guides for applying EHD printing technology into flexible electronics on the woven fabric.

Funder

Fundamental Research Funds for Central Universities of the Central South University

Shanghai Natural Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3