Limitations on MEMS design resulting from random stress gradient variations in sputtered thin films

Author:

Zhu William ZORCID,Assylbekova Meruyert,McGruer Nicol E

Abstract

Abstract Residual stress gradients often negatively affect the performance of MEMS devices, causing film curvature and changing the designed gaps of released structures. In this work, we built folded beams designed to compensate for the film curvature and keep the actuator gaps of sensitive resonant switches constant. While the average stress gradient is cancelled by our designs, we find that random variations in the stress gradient (rather than random variations in device dimensions) cause the majority of the observed variation in actuator gap. To our knowledge, this has not previously been reported, and represents an important limitation on MEMS designs using sputtered films. The standard deviation of the 400 nm contact gap for a folded beam of total length 152 µm and width 108 µm was measured to be about 134 nm. Using parameters measured from test cantilevers, our simulations predict that about 98% of the variation in contact gap is due to stress gradient variation, rather than variations in device geometry.

Funder

Defense Advanced Research Projects Agency

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3