Study on soft hot embossing process for making microstructures in a cyclo-olefin polymeric (COP) film

Author:

Lee Cheng-Je,Hsu Yu-HsiangORCID

Abstract

Abstract Thermoplastic polymers are the primary materials for fabricating commercial microfluidic devices. Despite many excellent properties, the low thermal conductivity is a common limiting factor in speeding up temperature-dependent biological processes, particularly for polymerase chain reactions. There is a need to develop a fabrication process to create thin-film microfluidic devices that can have a small thermal mass and a short microchannel-to-surface distance. This type of device requires the depth of micropatterns to be very close to the film thickness, which can encounter serious fractures during the demolding process. To overcome this challenge, we develop a soft hot embossing process to create micropatterns in a 188 µm thick cyclo-olefin polymeric (COP) film with a high embossing-depth to film-thickness ratio. The advantage of using a soft master is it can easily be peeled off from the molded film without causing a fracture from micropatterns. Polydimethylsiloxane (PDMS) is used as the soft silicone master, and four different 110 µm high micropatterns are studied, including ribs, grooves, and circular columns and cavities. PDMS masters for creating a 110 µm deep microchannel with different arrays of 70 µm deep microwells are also investigated. The heights of these one-layer and two-layer PDMS masters are 58.8% and 95.7% of the film thickness. Experimental findings show that less than 3% height variation can be achieved using a single-layer PDMS master with a low aspect ratio. For the two-layer micropatterns, it was found that a dense array with a smaller gap between microwells can have a better pattern transfer. In summary, this study demonstrates the feasibility of using a soft master to create deep or tall micropatterns in a COP film. The possibility of using a soft hot embossing process to create micropatterns for thin-film microfluidic devices is verified.

Funder

Ministry of Science and Technology, Taiwan

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3