From microchips to microneedles: semiconductor shear testers as a universal solution for transverse load analysis of microneedle mechanical performance

Author:

Haider KazimORCID,Lijnse ThomasORCID,Shu Wenting,O’Cearbhaill Eoin,Dalton ColinORCID

Abstract

Abstract Microneedles are a promising technology for pain-free and efficient pharmaceutical delivery. However, their clinical translation is currently limited by the absence of standardized testing methods for critical quality attributes (CQAs), such as mechanical robustness, which are essential for demonstrating safety and efficacy during regulatory review. A key aspect of mechanical robustness is transverse load capacity, which is currently assessed using diverse, non-standardized methods, which have limited capability to measure transverse failure forces at different heights along a microneedle. This is critical for understanding mechanics of potential failure modes during insertion after skin penetration. In this work we utilize a wire bond shear tester, a piece of test equipment widely used in the semiconductor industry, to measure the transverse load capacities of various microneedle designs. This approach is compatible with diverse microneedle types, geometries, and materials, and offers high-throughput and automated testing capabilities with high precision. We measure transverse failure loads with micron-scale control over the test height and have established comprehensive profiles of mechanical robustness along the length of different microneedle designs, which is a capability not previously demonstrated in literature for polymeric and metal microneedles. Transverse failure forces were 10 ± 0.3 gf–128 ± 12 gf for wire bonded gold and silver microneedles, 11 ± 0.7 gf–480 ± 69 gf for conical and pyramidal polymeric microneedles, and 206 ± 80 gf–381 ± 1 gf for 3D printed conical stainless steel microneedles. Additionally, we present standardized definitions for microneedle structural failure modes resulting from transverse loads, which can facilitate root cause failure analysis and defect detection during design and manufacturing, and aid in risk assessment of microneedle products. This work establishes a standardized approach to evaluating a significant CQA of microneedle products, which is a critical step towards expediting their clinical adoption.

Funder

Alberta Innovates

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3