Bioinspired drag reduction surfaces via triple lithography method based on three-layer hybrid masks

Author:

Zhou ZidanORCID,Yan Zexiang,Zhang Kun,Zhou Wenyuan,Ou Zhaoyang,Lv Xianglian,He YangORCID,Yuan Weizheng

Abstract

Abstract Drag reduction is a significant challenge for many industries, such as ships, pipelines, aircraft, energy, and transportation. Multilayer hierarchical microstructures can inhibit the development of vortices near the wall, which is beneficial to drag reduction. However, existing methods have difficulty performing the controlled fabrication of complex multilayer hierarchical microstructure arrays. Here, a novel triple lithography method based on three-layer hybrid masks is proposed for the controlled fabrication of three-dimensional multilayer hierarchical microstructure surfaces. The capability of the proposed process is verified by the multilayer hierarchical microstructures. In the fabrication process, a special lithography sequence is designed based on the hybrid mask materials. The drag reduction ability of the multilayer hierarchical microstructures is investigated in a closed air channel measurement system. The experimental results demonstrate that the fabricated multilayer hierarchical microstructures exhibit significant drag reduction ability under certain conditions. Conceptual models based on the fluid-solid coupling interface interaction are proposed to explain the drag reduction mechanism of multilayer hierarchical microstructures. The proposed fabrication method provides a powerful means for practical engineering applications of various bioinspired functional surfaces, such as drag reduction, anti-icing, antifouling, self-cleaning, and superhydrophobic surfaces.

Funder

Foundation of Key Laboratory

National Natural Science Foundation of China

National Basic Research Project

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3