Abstract
Abstract
Micro-electro-mechanical-systems (MEMS) structures with different in-plane dimensions often need to be released simultaneously from the bulk of the wafer and a single dry etching or wet etching technique cannot fulfill all release requirements. In this paper we present a universally applicable solution to release MEMS structures with different surface areas in a controlled and uniform way, which combines isotropic etching of a sacrificial silicon support structure by xenon difluoride with a predefined etch surface made by deep reactive ion etching. Two applications of this Sacrificial Grid Release Technology are presented, in which MEMS devices are released in silicon-on-insulator wafers. The demonstrated applications involve the release of microstructures with in-plane dimensions ranging from tens of micrometers to a few millimeters. The sacrificial silicon structure provides mechanical support which allows freedom in process flow design for fragile MEMS structures. The release technique can also be used to separate the chips from the wafer.
Funder
Stichting voor de Technische Wetenschappen
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献