Abstract
Abstract
A microfluidic oscillator is of interest because it converts a stable laminar flow to oscillatory flow, especially in view of the fact that turbulence is typically absent in miniaturized fluidic devices. One important design approach is to utilize hydroelastic effect-induced autonomous oscillations to modify the flow, so to reduce the reliance on external controllers. However, as complex fluid-structure interactions are involved, the prediction of its mechanism is rather challenging. Here, we present a simple equivalent circuit model and investigate the negative-differential-resistance (NDR) mechanism of a hydroelastic microfluidic oscillator. We show that a variety of complex flow behaviors including the onset of oscillation, formation of different oscillation patterns, collapse of the channel, etc can be well explained by this model. It provides a generic approach for construction of microfluidic NDR oscillators, following which a new design is also proposed. Relevant findings give more insights into the hydroelastic instability problems in microfluidics, and enrich the study of microfluidic flow control devices based on the electric circuit theory.
Funder
Fundamental Research Funds for the Central Universities of China
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献