Characterization of thin film Parylene C device curvature and the formation of helices via thermoforming

Author:

Thielen BriannaORCID,Meng EllisORCID

Abstract

Abstract In microfabricated biomedical devices, flexible, polymer substrates are becoming increasingly preferred over rigid, silicon substrates because of their ability to conform to biological tissue. Such devices, however, are fabricated in a planar configuration, which results in planar devices that do not closely match the shape of most tissues. Thermoforming, a process which can reshape thermoplastic polymers, can be used to transform flat, thin film, polymer devices with patterned metal features into complex three-dimensional (3D) geometries. This process extends the use of planar microfabrication to achieve 3D shapes which can more closely interface with the body. Common shapes include spheres, which can conform to the shape of the retina; cones, which can be used as a sheath to interface with an insertion stylet; and helices, which can be wrapped around nerves, blood vessels, muscle fibers, or be used as strain relief feature. This work characterizes the curvature of thin film Parylene C devices with patterned metal features built with varying Parylene thicknesses and processing conditions. Device curvature is caused by film stress in each Parylene and metal layer, which is characterized experimentally and by a mathematical model which estimates the effects of device geometry and processing on curvature. Using this characterization, an optimized process to thermoform thin film Parylene C devices with patterned metal features into 0.25 mm diameter helices while preventing cracking in the polymer and metal was developed.

Funder

University of Southern California

National Institutes of Health

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3