Abstract
Abstract
Flexible pressure sensors and temperature sensors are widely used in various fields because of their advantages in high flexibility, good shape retention and extremely small thickness. However, it is quite challenging to fabricate ultra-thin flexible pressure sensors with reliable sensing performance. In this work, we propose a new type of silicon–polymer heterogeneously integrated MEMS flexible sensor with an ultra-thin silicon-based absolute pressure sensing element and a thermistor. In the study, a flexible MEMS fabrication process is developed, which enables simultaneous fabrication in two different substrates and self-release of the thin and slim flexible sensor. The front-end section of the flexible sensor is with the width as 125 μm, length as 3.2 cm and total thickness as 12 μm, where the integrated silicon substrate thickness is only 3 μm. The sensor takes a slender shape to allow for medical invasive measurement by inserting it into a slim medical catheter or a syringe needle-tube. The sensitivity of the fabricated ultra-thin absolute pressure sensor is tested as 45.2 μV kPa−1 under 3.3 V supplied voltage, with the nonlinearity as only ±0.16% FS. The sensitivity of the thermistor is 10.4 Ω °C−1 in the range of 0 °C–100 °C. Moreover, the polysilicon thermistor can also serve as a micro-heater, where an electric heating power of 107 μW results in a temperature increase of 13.5 °C. With ultra-thin slim structure and satisfactory performance, the MEMS flexible sensor is promising in various fields like biomedical applications.
Funder
Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine
National Key Research and Development Program of China
Guangdong Provincal Key Field R&D Plan Project
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials