A novel electromagnetic micropump with PDMS membrane supported by a stainless-steel microstructure

Author:

Dehghan Mohammad,Tahmasebipour MohammadORCID

Abstract

Abstract As a main component, membrane micropumps play a key role in developing microfluidic systems. This part pumps fluids by deflecting a membrane using a micro-actuator with a deflection range of a few micrometers during a few seconds. Most electromagnetic micropumps have low lifetime and fracture toughness or low recovery speed. Micropumps with metallic mass-spring structures can overcome the mentioned disadvantages or limitations. This study investigated the fabrication and characterization of a novel electromagnetic micropump. The proposed micropump consists of a stainless-steel mass-spring structure, a polydimethylsiloxane body and membrane, a permanent NdFeB magnet, a micro-coil, and a 3D printed spacer. To characterize the micropump, the effects of the frequency and duty cycle of the electric current applied to the micro-coil on the micropump flow rate and the membrane deflection vs. time were investigated. A membrane deflection of ±8 µm was obtained in 4 s by applying 1000 mA electrical current to the micro-coil. The maximum volumetric flow rate of 523 nl s−1 was obtained at a frequency of 125 mHz and a duty cycle of 50%. The von Mises stress distribution in the micropump membrane and variations of the fluid velocity in the microchannels were analyzed using the finite element method.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3