Sound dissipation from plate-type resonators excited in non-conventional transversal modes in liquids

Author:

Pfusterschmied GORCID,Weinmann C,Schneider M,Platz D,Shen NaijianORCID,Sader J,Schmid U

Abstract

Abstract Vibrational modes of higher order in micromachined resonators exhibit low damping in liquid environments, which facilitates accurate sensing even in highly viscous liquids. A steady increment in mode order, however, results in sound dissipation effects at a critical mode number n crit, which drastically increases damping in the system. Basic understanding in the emerging of sound dissipation in micromachined resonators is therefore of utmost importance, when an application of higher mode orders is targeted. For that reason, we experimentally investigated in this paper the appearance of sound dissipation in higher order non-conventional vibrational modes in MEMS plate resonators in liquids. The results are compared to those of an analytical model and of finite element method analyses. Micromechanical piezoelectric resonators were fabricated and characterized in sample fluids with a dynamic viscosity μ fluid ranging from 1 to 5 mPa s and density values ρ fluid ranging from 0.774 up to 0.835 kg l−1. Quality factors up to 333 are obtained for the eighth mode order in model solution with a dynamic viscosity of 1 mPa s. By monitoring the resonance and damping characteristics as a function of mode order, sound dissipation effects occur, observed by the detection of increased damping, starting at mode number n = 8, which is in good agreement to the predictions of an analytical model and to finite element method simulations. At the critical mode number n crit, a reduction in quality factor up to 50% is measured. The results show a direct correlation of n crit and the density of the fluid, which agrees to theory. The lowest value of 8 for n crit is obtained in a sample liquid with the lowest density value of 0.774 kg l−1, followed by n crit = 9 in a sample liquid with ρ fluid = 0.782 kg l−1 and n crit = 10 in a sample liquid with ρ fluid = 0.835 kg l−1. These findings are of particular interest for sensing applications in low dense liquids, as sound dissipation effects emerge even at lower mode numbers.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3