Wafer-scale silicon microfabrication technology toward realization of low-cost sub-THz waveguide devices

Author:

Zhao XinghaiORCID,Wu Peng,Liu Fei

Abstract

Abstract This paper presents a wafer-scale silicon microfabrication technology for the sub-terahertz (sub-THz) waveguide device mass production. Based on the effective scheme, a WR-5 (140–220 GHz) straight rectangular waveguide and a WR-2.8 (260–400 GHz) rectangular waveguide bandpass filter are implemented as demonstrated examples. The silicon deep reactive ion etching (DRIE) process is employed to etch through the total thickness of the silicon wafer and form the main waveguide channels. Then, a low-temperature thermal compression process is used to bond the trough-etched wafer with the top and bottom metallised silicon wafers to form the closed waveguide structures without any precise alignment process. The fabricated waveguide has the benefit of low transmission loss (0.03–0.05 dB mm−1) at the whole G band. Besides, to measure the fabricated WR-2.8 waveguide filter and solve the measuring equipment standard waveguide difference, silicon micromachined waveguide transitions are explored and fabricated to match two different frequency-band modules for measuring the waveguide filters in the desired full frequency band, which also has a potential application for the different size waveguide conversion. The measured results agree well with the simulated ones. The measured 3 dB bandwidth is 9.3%, with a central frequency of 343 GHz; the average insertion loss (IL) is about 1.6 dB in the pass band, including two extra straight waveguides of 8 mm length on input/output ends and two external waveguide-to-waveguide transitions. The proposed method provides a feasible and cost-effective solution for the mass production of high-performance waveguide devices and integrated systems in sub-THz frequency bands and beyond.

Funder

Wallenberg-NTU postdoctoral research fellowship

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cryogenic DRIE processes for high-precision silicon etching in MEMS applications;Journal of Micromechanics and Microengineering;2024-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3