A liquid–metal-based microscale calorimetric in-chip flow sensor for flow rate measuring

Author:

Deng Yuqin,Ye Zi,Deng Zhongshan,Hong Jie,Zhang HuiminORCID,Gui LinORCID

Abstract

Abstract This work proposes a liquid–metal-based calorimetric micro-flow sensor within a polydimethylsiloxane (PDMS) chip. It can measure the flow rate of fluid in microscale channels, with a range as low as several microliters per minute. This in-chip sensor is proposed to solve the issue of detecting the flow rate in microfluidic systems. To make the sensor compatible with PDMS microfluidic chips, low-melting-point gallium-based alloy and bismuth-based (bi-based) alloy are used to make the micro heater and bi-metal thermocouples, for these alloys can be easily injected into a PDMS chip to form electrodes. To minimize heat resistance (or temperature difference) between fluid and the detecting ends of thermocouples, these ends are directly exposed to liquid in the flow channel with the help of a special reversible bonding technology. Thermocouples are connected in series to improve the sensor’s response. A novel method to bond and electrically connect the sensor to a print circuit board is also elaborated. Since the calorimetric flow sensor is sensitive to heating power, fluid temperature and environment cooling, a dimensionless parameter less independent of these factors is deduced from heat transfer theory, and this idea is used in result processing to offset the bad effect. Experiments with pure water show that this sensor can be used to detect flow rates, with a resolution up to 4 µl min−1 mV−1 and a range of 12 µl min−1 in this case, and that at different heating powers, the thermal potential results vary significantly whereas the dimensionless results nearly keep the same. Present work indicates that this sensor has the potential to be integrated into a PDMS microfluidic system and to provide accurate and stable results if a dimensionless method is used in data processing.

Funder

the Science and Technology Program from State Grid Corporation of China

the National Key Research and Development Program of China

Fund of Technical Institute of Physics and Chemistry

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3