An intubation catheter integrated with flow sensors and smart actuators for characterizing airflow patterns in stenosed trachea: an objective guide for CAO management

Author:

Alekya B,Sitaramgupta V V S N,Arjun B S,Bhushan VORCID,Abishek KevinORCID,Rao SanjayORCID,Kim YeongjinORCID,Pandya Hardik JORCID

Abstract

Abstract Stenosis reduces the effective lumen area in the tracheal and bronchial segments of the airway anatomy. Loss in patency due to obstruction increases resistance to airflow; thus, severe narrowing is often associated with morbidity and mortality. Etiologies such as congenital tracheal stenosis, tracheomalacia, laryngeal and subglottic stenosis, atresia are few among the many pathologies causing major airway obstruction and respiratory distress. Diagnosis of such anomalies is usually based on clinical suspicion due to the non-specificity of the associated clinical symptoms. Visual assessment using conventional bronchoscopy or radiography images from CT scan for precisely locating obstruction site is highly subject to clinician’s expertise. Characterizing airflow patterns in stenosed airway calls for newer diagnostic tools that can effectively quantify changes in airflow due to construction sites. Our work presents a steerable intubation catheter that can quantitatively measure air velocity across various segments of the tracheobronchial tree. The catheter consists of a three-layer flexible printed circuit board integrated with micro-electro-mechanical system-based thermal flow sensors and a pair of sub-millimeter helical shape memory actuators. Flow distribution is measured in excised sheep tracheal tissues at 15, 30, 50, 65, and 80 l min−1 for normal and stenosed conditions. Even a 10% reduction in lumen area generated unique peaks corresponding to the obstruction site; thus, the catheter can locate stenosis at the precritical stage. For 50% tracheal obliteration, the sensor closest to stenosis showed a 2.4-fold increase in velocity when tested for reciprocating flows. Thus, flow rate scales quadratically with reducing cross-section area, contributing to increased airflow resistance.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3