An improved dissipative particle dynamics method for the liquid-particle two-phase flow in microchannels

Author:

Dong Hua,Wu Xu,Fan Liang-LiangORCID,Zhao Liang

Abstract

Abstract Liquid-particle two-phase flow in microchannel widely exists in the fields of biomedical and environmental monitoring, such as the lab-chip device for disease diagnosis. The standard dissipative particle dynamics (DPD) method has been previously employed to study the liquid-particle two-phase flow in microchannel, but it cannot accurately simulate the real process because of the unsuitable DPD parameters. In the present study, an improved DPD method was developed by changing the system energy and fitting the characteristic curve between the random force coefficient and the Schmidt number. In addition, a new logarithmic relationship between the conservative force coefficient and the particle size was found. The result demonstrated that the improved DPD method enabled more accurate simulation on the liquid-particle two-phase flow in microchannels than the standard DPD method. For instance, in the simulation of particle sedimentation, the relative deviation between the value obtained by the improved DPD method and the theoretical value was less than 6% while the relative deviation was more than 20% for the standard DPD method. The simulated result of the particle migration in microchannel was in good agreement with the result obtained by Matas et al, and the relative deviation was less than 1.5%. Therefore, the improved DPD method would have great potentials in the study on the liquid-particle two-phase flow in microchannels.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3