Development of piezoresistive flexible sensor with dual-height cylindrical microstructure surfaces to achieve vehicle vibration monitoring

Author:

Zhang Decheng,Xie JiaqingORCID,Meng Xiaoyu,Pang Haoran,Sun Ruqian,Fan Haiyan,Nan Xiaohui,Zhou Zhikang

Abstract

Abstract This research proposed a vibration monitoring device based on a piezoresistive flexible sensor with microstructured surfaces to achieve a simple acquisition of vibration information in the driver’s cabin of automobiles. The shape, size and arrangement mode of microstructures on the piezoresistive flexible sensor performance were investigated by finite element simulation. The polydimethylsiloxane/hydroxylated multi walled carbon nanotubes (PDMS/MWCNTs-COOH) composite membranes were prepared by the combination of high-pressure spraying and spinning coating method. The electromechanical response curves of the piezoresistive flexible sensor composed of a double-layer PDMS/MWCNTs-COOH composite membranes based on a dual-height cylindrical microstructure were tested. A vibration monitoring device was developed to process the signals obtained by the fabricated piezoresistive flexible sensor, and the vibration response of the car cab under different driving conditions was investigated. The results indicated that the cylindrical microstructure with small size can improve the sensitivity of the fabricated piezoresistive flexible sensor. Compared with the single-height and dual-height cylindrical microstructure, the piezoresistive flexible sensor with dual-height cylindrical microstructure can expand the detection range, and improve the linearity and sensitivity. The piezoresistive flexible sensor exhibits excellent performance, with a sensitivity of 1.774 kPa−1 and a detection range is 0–0.5 kPa. The above advances can improve the authenticity of the collected data, and provide a basis for the processing and analysis of the vibration signal before improving the noise, vibration and harshness performance of the vehicle.

Funder

Shaanxi Province Science Foundation for High-level Talents

Natural Science Foundation of Ningxia

National Natural Science Foundation of China

Shaanxi Province Science Foundation for Youths

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3