Development of multi-depth probing 3D microelectrode array to record electrophysiological activity within neural cultures

Author:

Yadav NeerajORCID,Lisa Donatella Di,Giacomozzi FlavioORCID,Cian Alessandro,Giubertoni Damiano,Martinoia Sergio,Lorenzelli Leandro

Abstract

Abstract Microelectrode arrays (MEAs) play a crucial role in investigating the electrophysiological activities of neuronal populations. Although two-dimensional neuronal cell cultures have predominated in neurophysiology in monitoring in-vitro the electrophysiological activity, recent research shifted toward culture using three-dimensional (3D) neuronal network structures for developing more sophisticated and realistic neuronal models. Nevertheless, many challenges remain in the electrophysiological analysis of 3D neuron cultures, among them the development of robust platforms for investigating the electrophysiological signal at multiple depths of the 3D neurons’ networks. While various 3D MEAs have been developed to probe specific depths within the layered nervous system, the fabrication of microelectrodes with different heights, capable of probing neural activity from the surface as well as from the different layers within the neural construct, remains challenging. This study presents a novel 3D MEA with microelectrodes of different heights, realized through a multi-stage mold-assisted electrodeposition process. Our pioneering platform allows meticulous control over the height of individual microelectrodes as well as the array topology, paving the way for the fabrication of 3D MEAs consisting of electrodes with multiple heights that could be tailored for specific applications and experiments. The device performance was characterized by measuring electrochemical impedance, and noise, and capturing spontaneous electrophysiological activity from neurospheroids derived from human induced pluripotent stem cells. These evaluations unequivocally validated the significant potential of our innovative multi-height 3D MEA as an avant-garde platform for in vitro 3D neuronal studies.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3