Systematic variation of design aspects for a significant increase in thermal fracture resistance of alumina microthrusters

Author:

Åkerfeldt ErikaORCID,Klintberg LenaORCID,Thornell GregerORCID

Abstract

Abstract Because of thermal stresses occurring upon rapid heating or cooling, microcomponents made from high-temperature co-fired ceramics (HTCC) often fail at temperatures far below what the materials can withstand per se. This work investigates how resistance to thermal fracture in HTCC microcomponents can be increased by improving the component design, aiming at increasing the thermal performance of a microthruster with integrated heaters. The effect of four design parameters: component and cavity geometries (circular or square), heater location (central or peripheral), and addition of embedded platinum layers, on thermal fracture resistance was investigated through a full factorial designed experiment. Components of different designs were manufactured, and their thermal fracture resistance tested by rapid heating until failure. Peripheral heater location and presence of embedded platinum layers were seen to improve resistance to thermal fracture, whereas the shape of the component and the cavity did not significantly affect thermal performance. The most favourable design was then used for a cold gas microthruster that was fabricated and evaluated with respect to thermal fracture resistance. The microthruster survived rapid heating up to 1460 °C and was operated as a cold gas thruster at temperatures up to 772 °C, which is more than twice the maximum temperatures previously reported for alumina microthrusters.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3