Abstract
Abstract
We consider finite element solutions to quadratic optimization problems, where the state depends on the control via a well-posed linear partial differential equation. Exploiting the structure of a suitably reduced optimality system, we prove that the combined error in the state and adjoint state of the variational discretization is bounded by the best approximation error in the underlying discrete spaces. The constant in this bound depends on the inverse square root of the Tikhonov regularization parameter. Furthermore, if the operators of control action and observation are compact, this quasi-best approximation constant becomes independent of the Tikhonov parameter as the mesh size tends to 0 and we give quantitative relationships between mesh size and Tikhonov parameter ensuring this independence. We also derive generalizations of these results when the control variable is discretized or when it is taken from a convex set.
Subject
Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献