Quantitative signal subspace imaging

Author:

González-Rodríguez PedroORCID,Kim Arnold DORCID,Tsogka ChrysoulaORCID

Abstract

Abstract We develop and analyze a quantitative signal subspace imaging method for single-frequency array imaging. This method is an extension to multiple signal classification which uses (i) the noise subspace to determine the location and support of targets, and (ii) the signal subspace to recover quantitative information about the targets. For point targets, we are able to recover the complex reflectivity and for an extended target under the Born approximation, we are able to recover a scalar quantity that is related to the product of the volume and relative dielectric permittivity of the target. Our resolution analysis for a point target demonstrates this method is capable of achieving exact recovery of the complex reflectivity at subwavelength resolution. Additionally, this resolution analysis shows that noise in the data effectively acts as a regularization to the imaging functional resulting in a method that is surprisingly more robust and effective with noise than without noise.

Funder

Division of Mathematical Sciences

Ministerio de Ciencia e Innovación

Air Force Office of Scientific Research

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tunable High‐Resolution Synthetic Aperture Radar Imaging;Radio Science;2022-10-30

2. High-resolution imaging for synthetic aperture radar;2022 IEEE Research and Applications of Photonics in Defense Conference (RAPID);2022-09

3. High-Resolution, Quantitative Signal Subspace Imaging for Synthetic Aperture Radar;SIAM Journal on Imaging Sciences;2022-08-04

4. Corrigendum: Quantitative signal subspace imaging (2021 Inverse Problems 37 125006);Inverse Problems;2022-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3