On the uniqueness of inverse problems for the reduced wave equation with unknown embedded obstacles

Author:

Yang Jiaqing,Ding Meng,Liu Keji

Abstract

Abstract In this paper, we consider inverse problems associated with the reduced wave equation on a bounded domain Ω R N ( N 2 ) for the case where unknown obstacles are embedded in the domain Ω. We show that, if both the leading and 0-order coefficients in the equation are a priori known to be piecewise constant functions, then both the coefficients and embedded obstacles can be simultaneously recovered in terms of the local Dirichlet-to-Neumann map defined on an arbitrary small open subset of the boundary ∂Ω. The method depends on a well-defined coupled PDE-system constructed for the reduced wave equations in a sufficiently small domain and the singularity analysis of solutions near the interface for the model.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3