MiPhDUO: microwave imaging via physics-informed deep unrolled optimization

Author:

Zumbo Sabrina,Mandija StefanoORCID,Isernia TommasoORCID,Bevacqua Martina TORCID

Abstract

Abstract Microwave imaging (MWI) is a non-invasive technique that can identify unknown scatterer objects’ features while offering advantages such as low cost and portable devices with respect to other imaging methods. However, MWI faces challenges in solving the underlying inverse scattering problem, which involves recovering target properties from its scattered fields. Existing methods include linearized and non-linear optimization approaches, but they have limitations respectively in terms of range of validity and computational complexity (in view of the possible occurrence of ‘false solutions’). In recent years, learning-based approaches have emerged as they can allow real-time imaging but usually lack generalizability and a direct connection to the underlying physics. This paper proposes a physics-informed approach that combines convolutional neural networks with physics-based calculations. It is based on a few cascaded operations, making use of the gradient of the relevant cost function, and successively improving the estimation of the unknown target. The proposed approach is assessed using simulated as well as experimental Fresnel data. The results show that the integration of physics with deep learning can contribute to improve reconstruction accuracy, generalizability, and computational efficiency in MWI.

Funder

RADIOAMICA: Open network per la radiomica/radiogenomica cooperativa basata su intelligenza artificiale

icare

Netherlands Organisation for Scientific Research

PRIN project “DISCERN: aDvanced hybrId breaSt CancER imagiNg”

Publisher

IOP Publishing

Reference54 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3