Reconstructing the shape and material parameters of dissipative obstacles using an impedance model

Author:

Askham TravisORCID,Borges CarlosORCID

Abstract

Abstract In inverse scattering problems, a model that allows for the simultaneous recovery of both the domain shape and an impedance boundary condition covers a wide range of problems with impenetrable domains, including recovering the shape of sound-hard and sound-soft obstacles and obstacles with thin coatings. This work develops an optimization framework for recovering the shape and material parameters of a penetrable, dissipative obstacle in the multifrequency setting, using a constrained class of curvature-dependent impedance function models proposed by Antoine et al (2001 Asymptotic Anal. 26 257–83). We find that in certain regimes this constrained model improves the robustness of the recovery problem, compared to more general models, and provides meaningfully better obstacle recovery than simpler models. We explore the effectiveness of the model for varying levels of dissipation, for noise-corrupted data, and for limited aperture data in the numerical examples.

Funder

Office of Naval Research

Publisher

IOP Publishing

Reference74 articles.

1. Direct and inverse scattering problems for inhomogeneous impedance cylinders of arbitrary shape;Akduman;Radio Sci.,2003

2. Hybrid Gauss-Trapezoidal quadrature rules;Alpert;SIAM J. Sci. Comput.,1999

3. Approximation by generalized impedance boundary conditions of a transmission problem in acoustic scattering;Antoine;ESAIM Math. Model. Numer. Anal.,2005

4. On the construction of approximate boundary conditions for solving the interior problem of the acoustic scattering transmission problem;Antoine,2005

5. High-frequency asymptotic analysis of a dissipative transmission problem resulting in generalized impedance boundary conditions;Antoine;Asymptotic Anal.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3