Bayesian design of measurements for magnetorelaxometry imaging *

Author:

Helin TORCID,Hyvönen NORCID,Maaninen J,Puska J-P

Abstract

Abstract The aim of magnetorelaxometry imaging is to determine the distribution of magnetic nanoparticles inside a subject by measuring the relaxation of the superposition magnetic field generated by the nanoparticles after they have first been aligned using an external activation magnetic field that has subsequently been switched off. This work applies techniques of Bayesian optimal experimental design to (sequentially) selecting the positions for the activation coil in order to increase the value of data and enable more accurate reconstructions in a simplified measurement setup. Both Gaussian and total variation (TV) prior models are considered for the distribution of the nanoparticles. The former allows simultaneous offline computation of optimized designs for multiple consecutive activations, while the latter introduces adaptability into the algorithm by using previously measured data in choosing the position of the next activation. The TV prior has a desirable edge-enhancing characteristic, but with the downside that the computationally attractive Gaussian form of the posterior density is lost. To overcome this challenge, the lagged diffusivity iteration is used to provide an approximate Gaussian posterior model and allow the use of the standard Bayesian A- and D-optimality criteria for the TV prior as well. Two-dimensional numerical experiments are performed on a few sample targets, with the conclusion that the optimized activation positions lead, in general, to better reconstructions than symmetric reference setups when the target distribution or region of interest are nonsymmetric in shape.

Funder

Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3