A mixed element scheme for the Helmholtz transmission eigenvalue problem for anisotropic media

Author:

Liu Qing,Li TiexiangORCID,Zhang Shuo

Abstract

Abstract In this paper, we study the Helmholtz transmission eigenvalue problem for inhomogeneous anisotropic media with the index of refraction n ( x ) 1 in two and three dimensions. Starting with the nonlinear fourth-order formulation established by Cakoni et al 2009 J. Integral Equ. Appl. 21 203–27, we present an equivalent mixed formulation for this problem with auxiliary variables, followed by finite element discretization. Using the proposed scheme, we rigorously show that the optimal convergence rate for the transmission eigenvalues on both convex and nonconvex domains can be expected. With this scheme, we obtain a sparse generalized eigenvalue problem whose size is too demanding, even with a coarse mesh that its smallest few real eigenvalues fail to be solved by the shift and invert method. We partially overcome this critical issue by deflating nearly all of the eigenvalues with huge multiplicity, resulting in a marked reduction in the matrix size without deteriorating the sparsity. Extensive numerical examples are reported to demonstrate the effectiveness and efficiency of the proposed scheme.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Reference28 articles.

1. Efficient spectral methods for transmission eigenvalues and estimation of the index of refraction;An;J. Math. Study,2014

2. Eigenvalue problems;Babuška,1991

3. The linear sampling method for anisotropic media;Cakoni;J. Comp. Appl. Math.,2002

4. The computation of lower bounds for the norm of the index of refraction in an anisotropic media from far field data;Cakoni;J. Integral Equ. Appl.,2009

5. Inverse scattering theory and transmission eigenvalues;Cakoni,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3