Permeability estimation of a porous structure in cancer treatment based on sampled velocity measurement*

Author:

Afshar SepidehORCID,Hu WeiweiORCID

Abstract

Abstract The problem of parameter identification appears in many physical applications. A parameter of particular interest in cancer treatment is permeability, which modulates the fluidic streamlines in the tumor microenvironment. Most of the existing permeability identification techniques are invasive and not feasible to identify the permeability with minimal interference with the porous structure in their working conditions. In this paper, a theoretical framework utilizing partial differential equation (PDE)-constrained optimization strategies is established to identify a spatially distributed permeability of a porous structure from its modulated external velocity field measured around the structure. In particular, the flow around and through the porous media are governed by the steady-state Navier–Stokes–Darcy model. The performance of our approach is validated via numerical and experimental tests for the permeability of a 3D printed porous surrogate in a micro-fluidic chip based on the sampled optical velocity measurement. Both numerical and experimental results show a high precision of the permeability estimation.

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3