Stability estimate for an inverse stochastic parabolic problem of determining unknown time-varying boundary *

Author:

Liao ZhonghuaORCID,Lü QiORCID

Abstract

Abstract Stochastic parabolic equations are widely used to model many random phenomena in natural sciences, such as the temperature distribution in a noisy medium, the dynamics of a chemical reaction in a noisy environment, or the evolution of the density of bacteria population. In many cases, the equation may involve an unknown moving boundary which could represent a change of phase, a reaction front, or an unknown population. In this paper, we focus on an inverse problem with the goal is to determine an unknown moving boundary based on data observed in a specific interior subdomain for the stochastic parabolic equation. The uniqueness of the solution of this problem is proved, and furthermore a stability estimate of log type is derived. This allows us, theoretically, to track and to monitor the behavior of the unknown boundary from observation in an arbitrary interior domain. The primary tool is a new Carleman estimate for stochastic parabolic equations. As a byproduct, we obtain a quantitative unique continuation property for stochastic parabolic equations.

Funder

NSF

Science Development Project of Sichuan University

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3